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Abstract 

In this article, we address the seemingly high prevalence of false discoveries in 

recognition-memory research.  Our challenge is to find a valid measure that 

effectively separates the contribution of sensitivity (accuracy) from that of bias. A 

stark realization emerged through Monte Carlo simulations, that in a myriad of tasks, 

sensitivity is confounded with bias.  This is true for tasks that involve binary 

judgments for single items that are presented at test (Rotello et al., 2008). As a 

solution, we propose a version of a lesser-known measure, d-sub-a (da). Through 

comprehensive Monte Carlo simulations, we systematically evaluated the validity of 

common measures Pr = HR - FAR, A′, and d′, alongside da. We randomly sampled 

signals from Lure and Target distributions and used t-tests to compare iso-sensitive 

conditions differing in bias, across thousands of simulations iterations. For valid 

measures, significant results should be found at a rate of approximately 5%. We 

investigated the influence of different parameters, including the form of the 

distributions, their variability, the distance between them, the placement of response 

criteria, the sample size and the number of trials. Results revealed that common 

measures exhibited alarmingly high false discovery rates, exceeding 5%.  The rates 

rose to 100% with larger sample sizes and a large number of trials. In contrast, with 

only a few minor exceptions, da was not affected by changes in bias.  Our findings 

support the notion that da should be adopted as the default measure of sensitivity. 

  



Introduction 

Consider the following scenario: Researchers test patients on their memory 

performance compared to aged-matched controls, using a recognition-memory test. 

They conclude that patients' memory is significantly impaired. Treatment plans 

emphasizing memory improvement ensue. But what if patients’ ability to encode and 

retrieve items from memory is like that of the control group, and they only differ in 

bias, a lower (or higher) tendency to classify items as “old”?   

This scenario exemplifies the concerns that underlie this article—false 

discoveries in recognition memory (cf., Open Science Collaboration, 2015)— 

specifically, due to invalid measurement of participants’ performance.  In fact, a 

recent article described a ‘crisis of measurement’ facing the field of recognition 

memory (Brady et al., 2022). The crux of the matter is that with regard to commonly 

used sensitivity measures, none are valid measures of performance, able to tease apart 

the effects of sensitivity (accuracy) from bias in recognition memory. In the current 

article, we elucidate the concepts of sensitivity and bias alongside a brief review of 

the crisis.  Importantly, we propose a possible solution that might enable researchers 

to continue running recognition-memory experiments without exposing their results to 

heightened risks of reporting false discoveries.  

Measures that show invalid patterns of results, leading researchers to find false 

discoveries, have been previously documented in several research domains (Rotello et 

al., 2015). An example with an application to the legal domain is the sequential-

superiority effect—the presumably better ability to distinguish guilty from innocent 

suspects in a sequential eyewitness lineup (with suspects presented one at a time in 

sequential order) as compared to a simultaneous lineup (where all suspects appear 

together for inspection). This effect is discovered when measuring lineup accuracy 



with the diagnosticity ratio (for a meta-analysis, see Steblay et al., 2011). As it turns 

out, the diagnosticity ratio is higher as a function of the tendency to respond ‘old’ to 

faces (Mickes et al., 2012), thus confounding sensitivity with bias.  Other effects too 

have been found to confound sensitivity with bias, including the “belief bias effect" in 

the domain of reasoning, the "shooter bias" in the domain of social psychology, and 

maltreatment referrals in the domain of child welfare (Rotello et al., 2015). 

The current investigation is focused on recognition memory; still, it is likely 

relevant to tasks other than the recognition-memory task. Recognition is part of a 

family of tasks known as 'single-interval tasks' (Hautus et al., 2022). Such tasks are 

ubiquitous across all domains of cognitive research, including perception (e.g., visual-

discrimination task), attention (e.g., spatial-cueing paradigm), decision-making (e.g., 

multi-element averaging task), language (e.g., semantic-relatedness decision task) and 

meta-cognition (e.g., judgment of learning task). In these tasks, single items are 

presented at test, and participants are asked to make binary judgments regarding them 

(e.g., seen-unseen; left-right). Old-new recognition falls into this category because 

participants are presented at test with single items and asked to make old/new 

judgments, that is, to judge whether it was an ‘old’ item that had been presented at 

study (i.e., a target) or whether it was a ‘new’ item that had not been presented at all 

(i.e., lure). Any conclusions drawn from this article regarding the recognition-memory 

task are likely relevant, at least to some degree, to other single-interval tasks (Rotello 

et al., 2015). Importantly, the current article provides a critical step in the direction of 

eliminating the sensitivity-confound in new research and in uncovering as-yet 

unknown false discoveries in our literature.  

Typically, in single-interval tasks including the recognition task, researchers aim 

to find a difference in performance between two (or more) test conditions (e.g., 



shallow as compared to deep encoding, Craik & Tulving, 1975). The dependent 

variable, sensitivity, refers to how sensitive participants are in distinguishing between 

the mnemonic signals associated with targets as compared to those of lures (Hautus et 

al., 2022). Participants can correctly judge an item as a target (Hit – the item was 

indeed a target) or do so erroneously (False Alarm – the item was in fact a lure).  

Though sensitivity is the latent variable researchers are interested in, bias, 

defined as a participant’s proclivity for one choice over the other, also impacts 

participants’ responses (Hautus et al., 2022). Participants with a more liberal level of 

bias will have a higher rate of ‘old’ responses, whereas participants with a more 

conservative level of bias will have a lower rate of ‘old’ responses, irrespective of 

whether the item is a target or a lure.  The level of bias represents the tendency of an 

individual to respond one way or the other. 

Crucially, a valid measure of sensitivity must be independent of bias. Thus, a 

measure of sensitivity should index the level of sensitivity but be impartial to changes 

in bias.  Specifically, if two conditions do not differ in sensitivity but differ in bias, a 

valid measure should erroneously indicate a significant difference between the two 

conditions only 5% of the time due to type I errors (here and elsewhere, we assume an 

 level of 5%).  We say that the measure is ‘bias independent’ when the Type I error 

rate is approximately 5%. In this article, we present Monte Carlo simulations that test 

these exact scenarios; we compared iso-sensitive conditions with a difference in bias 

and tested, across thousands of experiments, whether measures of sensitivity show 

erroneous significant differences at a 5% rate or higher.      

Numerous single-point measures of sensitivity have been proposed, each 

balancing in a different way the magnitude of hit rate (HR; the proportion of "old" 

responses to targets) with that of the false alarm rate (FAR; the proportion of "old" 



responses to lures).  Each measure is premised on unique assumptions regarding the 

population from which the data are sampled (for details, see below, ‘measurement 

model’) 1. The goal was to obtain a measure that indexes sensitivity irrespective of 

bias.   

The idea that a sensitivity measure should be bias-independent is part of many 

researchers’ tacit (and for some, explicit) knowledge. To illustrate, many if not most 

researchers would be hesitant in inferring changes in sensitivity between conditions 

due to differences in HR across the two conditions (e.g., 90% and 60%, under deep 

and shallow encoding, respectively). It is rather obvious that HR is not bias-

independent; differences in HR between conditions can reflect changes in sensitivity, 

bias, or both. While it is obvious that HR is not bias-independent, HR does not 

balance HR with FAR. Still, unfortunately, it turns out that even measures that do 

balance FARs with HRs are not bias-independent.   

The idea that changes in the value of a measure across experimental conditions 

can possibly be the outcome of changes in bias was brought home in the most 

powerful way through Monte Carlo simulations (Schooler & Shiffrin, 2005; Rotello et 

al., 2008). The research we describe in this article is mostly based on (and, in parts, is 

a replication of) those 2008 simulations, so we turn to a brief description of those 

simulations.  

Rotello and colleagues simulated iso-sensitive aniso-bias conditions and indexed 

sensitivity using different measures, to test if Type I errors will emerge in a rate 

higher than 5%. The simulations tested the measures under different forms of lure and 

target distributions, different manipulation strengths (i.e., distance between the means 

                                                           
1  The only known measure that is non-parametric, therefore does not entail assumptions regarding the 

population, is the geometric area under the ROC curve (AUCg). However, even AUC has been shown 

to be bias-dependent (Levi et al., 2019). 



of the lure and target distributions), different criterion placements, different sample 

sizes and different number of trials.  Under the variety of simulated conditions and 

across a thousand iterations, the rate of Type I errors was tallied. The results revealed 

that as a rule, all common measures used for demonstrating different levels of 

sensitivity in single-interval tasks such as recognition are not bias independent2.  

The first goal of the current article was to replicate these simulations. The 2008 

simulations put to test the validity of measures such as Percent correct, A′ and d′ (see 

details, below). The replication of the 2008 simulations is necessary for at least two 

reasons. First, like the need for a replication of empirical experiments, simulations too 

must be independently replicated.  Were there mistakes in the code?  Did the 

simulations sample the parameter space correctly? If we wish to consider the 

implications of the simulations—high rates of Type I errors—the findings must first 

be shown to replicate.  

Second, the 2008 findings did not receive the attention they deserved from the 

scientific community.  At the time the current article was written, the 2008 

simulations were cited only 97 times.  Researchers continue to use invalid measures 

until today.  Thus, the impact to the previous simulations was negligible, more so 

when considering the far-reaching implications of the simulations to so many 

cognitive tasks.  

The research community was only prompted to reflect on the manner that 

experiments were conducted and analyzed following the ‘replication crisis’ (Open 

Science Collaboration, 2015). The alarmingly low rates of replications that were 

found resulted in an influx of articles describing the ailments of current procedures 

                                                           
2  In the following sections, we specify several scenarios for which specific measures are valid. We will 

also explain why these scenarios are unlikely for recognition data.  



and possible cures (Smith & Little, 2018).  New journals were created, and scientific 

conferences devoted entire sections to addressing issues of methodology.  Today’s 

researchers are probably better prepared to process the alarming news that the 2008 

simulations bear.  It is time, therefore, that they be replicated. We thus examined 

whether common measures (Pr = HR - FAR, A′, d′; see below for the different 

formulas) were indeed not bias independent. To anticipate the results, we replicated 

the findings of the 2008 simulations.  

A second, more important goal of this article, was to demonstrate a remedy to 

this precarious situation.  Such a remedy required finding a measure—either a lesser-

known measure or an entirely new one—that could be shown to be bias independent. 

We will promote a little-known measure called d-sub-a (denoted da). Specifically, we 

promote our version of it (see below for detailed explanation). If successful, adopting 

this measure will provide a possible solution to the measurement crisis.  

To better understand the measurement crisis, we now remind readers of the 

psychometric concepts of reliability and validity. Reliability relates to the ability to 

repeat experiments and obtain similar results.  A measuring tape is reliable for 

measuring the length of different tables but would be less reliable (or not reliable at 

all) if measuring the width of pieces of paper. Validity describes the extent to which 

changes in the values of the dependent variable are related to the (typically latent) 

construct it is supposed to measure. Thus, if a measuring tape were to be used to 

measure the color of a table, the values read from the measuring tape would not 

capture the hue of the table.  This is even though these values might be highly 

reliable. A measure or test may have a high level of reliability yet not be valid. 

The replicability crisis has focused on enhancing reliability (e.g., on running high 

powered experiments and using large sample sizes; Smith & Little, 2018). 



Importantly, highly replicable results do not necessarily represent true discoveries.  If 

a study is reliable (easily replicated) but not valid, it might constitute a false discovery 

and would thus advance our knowledge in no way whatsoever.  

Alas, this seems to be the case for recognition-memory research. The results of 

the simulations that we wished to replicate here (Rotello et al., 2008) suggest that 

false discoveries in recognition research are easily replicated and more so with large 

samples and a large number of trials.  

To understand why false discoveries are so prevalent in recognition memory, it is 

helpful to distinguish between two types of models: the ‘data-generating model’ and 

the ‘measurement model’.  We argue that for all common recognition-memory 

sensitivity measures the two models are incongruent. Importantly, model incongruity 

likely leads to a high prevalence of false discoveries. 

Data-Generating Model. An often-overlooked fact is that empirical data do not 

come to the world in a haphazard way. Rather, data are sampled from a population 

with some form.  The form may be Gaussian or Uniform or any other imaginable (or 

unimaginable) distribution.  Whatever the distribution, it has certain parameters (e.g., 

equal or unequal variance). In the best-case scenario, heated debates may exist 

regarding the population characteristics (e.g., Mickes et al., 2007; Rouder et al., 2010; 

Wixted & Mickes, 2010). In the worst-case scenario, researchers are not even aware 

that the data are generated from a distribution. Irrespective of the epistemological 

knowledge concerning the population characteristics, the data are always sampled 

from a specific population. The term ‘data-generating model' refers to the population 

characteristics from which the data are sampled. With regard to recognition memory, 

our reading of the literature suggests that the leading data-generating model for 



recognition memory is that of Unequal-Variance Gaussian distributions.  Still, this is 

by no way consensual (more on this, below). 

Measurement Model.  Each of the different measures that have been proposed 

to index performance in single-interval tasks is formulated based on unique 

assumptions regarding the nature of a (likely unknown) data-generating model 

(notwithstanding measures that are linear transformations of each other). The term 

'measurement model' refers to the set of assumptions that a measure is based on. For 

example, the oft-used measure d′ has a measurement model of equal-variance 

Gaussian distributions of the lure and target items (Tanner & Swets, 1954). Below we 

list the measurement models for the measures we investigate in this article. 

When measuring recognition memory, the equal-variance assumption of d′ is 

incongruent with the leading data-generating model that assumes unequal variances of 

these distributions. Such discrepancies are the root of the measurement crisis: the 

measurement model is not congruent with the data-generating model.  Note that for 

any given data set sampled from a particular data-generating model, one measure at 

most can have a measurement model that reflects the true data-generating model 

(Brady et al., 2022).  Each of the other measures that have different measurement 

models will necessarily be incongruent with the data-generating model3. 

Unfortunately, there is no guarantee that the research community has identified the 

true data-generating model.  Even if it has, there is no guarantee that any known 

measure is congruent with this true data-generating model nor that such a measure 

exists.  

                                                           
3  Even if the discrepancies between the two models are small, the incongruity between a measurement 

model and the data-generating model can still be meaningful and render a measure invalid.  



But why would a discrepancy between the data-generating model and the 

measurement model lead to a measurement crisis? In theory, such discrepancies may 

only influence the validity of the measures to a negligible degree. Indeed, high 

correlations have been documented between different measures of sensitivity.  Given 

these high correlations, how consequential can using a measure that is premised on 

the wrong data-generating model be?  

It turns out that the consequences of using such assumption-incongruent 

measures are disastrous, yielding high rates of Type-I errors for non-existent 

differences of sensitivity.  Indeed, the Rotello et al. (2008) simulations reveal that 

common measures of sensitivity are not robust to incongruities between their 

measurement model and the data-generating model.  Specifically, when the 

experimental conditions differ only in bias, the measures will show significant 

differences in sensitivity at a high rate (i.e., high false-discovery rates). Moreover, and 

unintuitively, as sample size and with number of trials increase, the Type I error rates 

(T1ER) rise to 100%. Ponder this – a 100% T1ER translates to results that will always 

replicate, despite being false. As such, common sensitivity measures are invalid 

measures of sensitivity, and scientific discoveries made with these measures cannot be 

inferred from the data.  

We propose that da may be a valid measure of sensitivity yielding low T1ERs 

when indexing iso-sensitive conditions. Most sensitivity measures are based on only a 

single (FAR, HR) pair of observations (labeled ‘operating points’), and are thus called 

single-point sensitivity measures (SPSMs). In contrast, da can rely on multiple 

operating points. We now elaborate on these two approaches to measuring sensitivity.  

Multi-point sensitivity measures and ROCs. Researchers can use multiple 

(FAR, HR) points to index sensitivity. One common multi-point measure is AUCg 



(but see Footnote 1). The application of da we propose here is also based on multiple 

operating points (see below).     

The most common method for obtaining multiple operating points is by receiver-

operating characteristic (ROC) curves (Green & Swets, 1988).  ROC curves 

graphically depict multiple operating points by presenting the HR on the ordinate and 

FAR on the abscissa across different levels of response bias. The most frequently used 

method for obtaining ROC data is through the use of confidence ratings. To obtain a 

confidence ROC (Hautus et al., 2008), judgments are made on a confidence scale 

(e.g., on a scale ranging from 1-6, '1'= highly confident new; '6'= highly confident 

old). Given confidence ratings, it is possible to create different bias cutoffs computed 

for each participant across all responses4 (Levi et al., 2021). As described in Footnote 

4, for a six-point confidence scale, five (FAR, HR) operating points can be computed 

(For further explanation, see Mickes, 2015).  Each operating point reflects the same 

sensitivity level, but a different level of bias (Hautus et al., 2022). The ROC curve can 

be transformed into Z space (e.g., if H = .95, then zH = 1.645), yielding a zROC 

curve.   

The zROC curve is an important tool from which the data-generating model of a 

given task can be inferred (Swets, 1986; Wixted, 2007; Wixted & Mickes, 2010; 

Dube & Rotello, in press). Specifically, if the underlying distributions are Gaussian, 

the zROC curve has a linear slope (Hautus et al., 2022). For recognition data, the 

slope is indeed linear (Wixted, 2007; For a review see Wixted 2020). Importantly, the 

slope of the zROC curve—S—is an estimate of the lure-to-target ratio of the standard 

                                                           
4 The most liberal cutoff is created by regarding as 'new' responses of '1' and comparing them to 

Responses '2'-'6', regarded as 'old'.  HR and FAR can thus be computed for this scheme. A slightly less 

liberal cutoff scheme would be represented by tallying Responses 1 and 2, regarding them as 'new', and 

pitting them against Responses 3-6 viewed as 'old'.  This procedure continues until Responses 1-5 are 

regarded as ‘new’ and compared to Response 6, for a total of 5 HR-FAR pairs. 



deviations (SDs) of the data-generating model. Empirical studies have consistently 

found that for recognition, S = 0.8 on average.  This value represents a target 

distribution that is 25% wider than the lure distribution (Lockhart & Murdock, 1970; 

Ratcliff et al., 1992; Dougal & Rotello, 2007; Mickes et al., 2007; Wixted & Mickes, 

2010). In summary, according to the analysis of the zROC curve, the best data-

generating model for the recognition-memory task is a Gaussian unequal-variance 

signal detection (UVSD) model.  Critically, below we suggest that the measure, da, 

may have a measurement model that is congruent with that of the UVSD data-

generating model.    

Single-point sensitivity measures. The second approach to measuring 

sensitivity relies on a single (FAR, HR) pair, therefore only requiring participants' 

binary old/new judgment. Three of the most common SPSM are Pr, A′ and d′. All 

three measures are based on different measurement models.   

Pr = HR-FAR.  Pr, also known as "corrected hit probability" or "corrected hit 

rate" because HR is ‘corrected’ by subtracting the FAR from it.  This measure is 

premised on a double high-threshold model (Hautus et al., 2022), in which the 

mnemonic information is assumed to be in a discrete, binary state (but see Rotello et 

al., 2006; Pazzaglia et al., 2013; Starns et al., 2014). Importantly, previous simulations 

(Rotello et al, 2008) tested Percent correct.  Percent correct is a linear transformation 

of Pr and is based on the same measurement model, therefore the results for Pr and 

Percent correct are interchangeable. In the current simulations, we tested Pr instead of 

Percent correct because both Pr and Percent correct are regularly used by researchers 

in the field, and showing the low validity of both measures in simulations (Percent 

correct in the 2008 simulations, Rotello et al.; Pr in the current simulations) can 



benefit the establishment of a better measurement standard with a larger audience of 

researchers. 

A′. Initially introduced as an assumption-free measure (Pollack & Norman, 

1964), A′ was proven to implicitly assume a measurement model of either 

Rectangular or logistic distributions, depending on the magnitude of sensitivity 

(Macmillan & Creelman, 2004).    

d′. d′ is based on signal-detection theory.  It measures the distance between the 

means of the lure and target distributions, in units of their shared standard deviation. 

The underlying assumptions of d′ are that the lure and target distributions are equal-

variance Gaussians (Tanner & Swets, 1954).   

Importantly, all the SPSM are assumption-incongruent for the UVSD model – 

the model that perhaps best describes the data-generating model of recognition 

memory. Pr and A′ assume distributions that are not Gaussian. In contrast, d′ is 

premised on a Gaussian distribution.  However, it assumes the distributions to be 

equal variance. Critically, if the distributions underlying recognition memory are 

indeed Gaussian, multiple studies have shown that they are unequivocally not equal 

variance (Ratcliff et al., 1992; Dougal & Rotello, 2007; Mickes et al., 2007).  Stated 

differently, conditional on the distributions being Gaussian (the measurement model 

of d′), they are not equal variance—an assumption of the measurement model of d′.  

Thus, the equal-variance assumption of d′ is indefensible for recognition memory, 

wherein the data-generating model is reflected by a zROC slope of 0.8. 

𝒅′ =  𝒛(𝑯𝑹) − 𝒛(𝑭𝑨𝑹)                               (2) 

 

𝑨′ =

{
 

 
𝟏

𝟐
+
(𝑯 − 𝑭𝑨) ∙ (𝟏 + 𝑯 − 𝑭𝑨)

𝟒𝑯(𝟏 − 𝑭𝑨)
,   𝑭𝑨 ≤ 𝑯

𝟏

𝟐
+
(𝑭𝑨 − 𝑯) ∙ (𝟏 + 𝑭𝑨 − 𝑯)

𝟒𝑭𝑨(𝟏 − 𝑯)
,   𝑭𝑨 ≥ 𝑯

                  (𝟏) 



da.  Fortuitously, one measure of sensitivity, a multi-point measure, is congruent 

with the UVSD model. This measure is da (Swets & Pickett, 1982). Like d′, da is also 

based on signal-detection theory. Unlike d′, da is not premised on an equal-variance 

assumption. da is defined as the distance between the means of the lure and target 

distributions, measured in the root-mean square average of their SDs (Swets & 

Pickett, 1982). da is based on the subtraction of Z-transformations of HR and FAR, 

and is defined as:   

𝒅𝒂 = √

𝟐

𝟏 +
𝑺𝑫𝒍𝒖𝒓𝒆𝒔
𝑺𝑫𝒕𝒂𝒓𝒈𝒆𝒕𝒔

𝟐
 (𝒛(𝑯𝑹) −

𝑺𝑫𝒍𝒖𝒓𝒆𝒔
𝑺𝑫𝒕𝒂𝒓𝒈𝒆𝒕𝒔

∙ 𝒛(𝑭𝑨𝑹))                                
(3) 

The measurement model of da can support the UVSD5 data-generating model. By 

substituting the lure-to-target SD ratio (see Formula 3) with the zROC slope, S, we 

get a unique (multi-point) way to use da as a measure.  

Potentially, da might be a valid measure of recognition memory, when inserting a 

fixed value of 0.8 as the SD ratio. However, placing a mean value previously found in 

experiments as the SD ratio does not consider the variability in the magnitude of this 

ratio, and of S, across participants.  It turns out that the value of S varies across 

participants, with values as low as 0.5 for some participants and higher than 1 for 

others6 (Ratcliff et al., 1992; Macmillan et al., 2004). Here we propose taking this 

variability into account by estimating S Individually for each participant and then 

placing the obtained value as the SD ratio in computing da for that individual 

participant.  

To reiterate, one goal of this article was to replicate the Rotello et al. (2008) 

simulations. Like Rotello et al (2008), we too simulated data that were generated from 

                                                           
5 Note that for a Gaussian equal variance model, S = 1, and da reduces to d′. 
6 S=0.5 and S=1.5 reflect target distributions with SDs that are 100% wider and 50% narrower, 

respectively, of the SD of lure distribution.  



equal-variance Gaussian, unequal-variance Gaussian, and Rectangular distributions, 

in experiments with different manipulation strengths (i.e., the distance between the 

means of the lure and target distributions), sample sizes and the number of trials. 

Across thousands of iterations, two simulated experimental conditions were always 

compared, differing in bias but not in sensitivity. We measured sensitivity with the 

three common sensitivity measures: Pr, A′ and d′. Because the two conditions were 

iso-sensitive, significant differences in sensitivity should not be found above the 5% 

level. As a reminder, Rotello et al. found rates higher than 5%, reaching levels as high 

as 100% as the number of participants and trials increased. 

More importantly, we tested the validity of da as a measure of sensitivity, using S 

as an estimate of the lure-to-target SD ratio. The zROC curves we plotted for the 

computation of S were based on confidence ROC curves, created from 5 criteria we 

placed over the lure and target distributions (see Methods).  

For our proposed version of da, based on estimating the mean value of S across 

the two conditions for each participant, we included only participants with a minimum 

of three operating points in each condition. Some participants have fewer than five 

operating points because the Z transformation of the operating points7 is not possible 

for values of HR=1 or FAR=0. As a result, some simulated participants will have 

fewer than five operating points on their zROC curve (see Footnote 4).   

Our choice of a minimum of three operating points was based on the fact that 

with at least three points on the zROC, no correction method is required (for more 

detail, see Method). The problem with applying correction methods is that they all 

require additional assumptions regarding the data-generating model. By excluding 

                                                           
7 Although the rates of 1 or 0 can be altered using correction methods, we chose to refrain from using 

such methods (see Methods, below).   



participants with fewer than three operating points we were able to refrain from using 

any correction methods in our analyses. An additional benefit was that we would have 

a potentially better estimate of the SD ratio (by excluding participants with only two 

operating points, ostensibly yielding a worse estimation of the SD lure-to-target ratio).  

For all measures, we used the same lure and target distributions for both 

conditions and created a difference in bias by setting Condition 1 to have more liberal 

criteria (the liberal condition) and Condition 2 to have more conservative criteria (the 

conservative condition).  If a measure of sensitivity is valid, we should obtain the 

same index of sensitivity for both conditions, reflected in a T1ER of approximately 

5%. 

We predicted two main results.  First, common SPSMs are bias dependent and 

would yield high rates of Type I error, increasing with sample size and number of 

trials. Second, that da is a bias-independent measure of sensitivity.  

 

Methods 

We ran 10,000 iterations for each of 1,476 Monte-Carlo simulations in the goal 

of testing the validity of Pr, A′ and d′, and importantly, da. We simulated experiments 

of two-level within-participant designs in which we compared sensitivity for iso-

sensitive conditions. 

To simulate our data, we randomly sampled values of signals from lure and target 

distributions with means and SDs defined by parameters we chose (see "Distribution 

variables"). The signals sampled from the target distributions represented participants' 

responses to targets, both hits and misses. The signals sampled from the lure 

distribution represented participants' responses to lures, either false alarms (FAs) or 

correct rejections. 



Following Rotello et al. (2008), for each participant in a particular simulation, we 

used the identical sampled signal values for the two iso-sensitive conditions. By 

choosing this approach, we matched the two samples thereby simulating data from a 

within-participant design8. The only difference between the conditions was the 

placement of the criteria (see "Criteria variables" for details).  

Five criteria were needed to simulate a 6-point confidence scale, henceforth 

labeled C1-C5 (see Figure 1; see Footnote 4 for theoretical explanation). In both 

conditions, responses were categorized as hits or FAs (for signals sampled from the 

target and lure distribution, respectively) when the value of signals was higher than 

that of the middle criterion (C3, see Figure 1). HRs and FARs were used to calculate 

Pr, A′ and d′ (see Formula 2 and 3), as well as for da.  

                                                           
8 This sampling procedure yields the optimal conditions for demonstrating a measure’s validity, 

because given the identical observations, the same index of sensitivity should be obtained (within 

statistical error). Hence, if SPSMs are shown to not be valid under our sampling procedure, they cannot 

be valid when measuring sensitivity in real-world empirical data. The reverse is not true; measures that 

are found to be valid under our procedure which tests the measure under optimal conditions will still 

have to be tested in empirical setting to be endorsed as valid measures.   



Figure 1. Illustration of different criteria placements in the simulations, and the shift between 

the Liberal (left) and Conservative (right) conditions for the different placement. The two top 

illustrations represent a neutral criteria placement, wide (Panel A) and narrow (Panel B). The 

bottom illustrations represent a Conservative (Panel C) and a Liberal (Panel D) placement. 

The illustrations depict cartoons of the criteria placement and do not reflect the true values 

used in the simulations.   

 

For the calculation of S, multiple operating points were needed. See Appendix B, 

for an illustration of how different points are extracted from each of the criteria. The 

points were subsequently converted to z-space.  



For two reasons, several simulated participants had fewer than five operating 

points9. As mentioned, we included participants with at least three operating points in 

each condition. To get a more reliable estimate of the true lure-to-target SD ratio, for 

each participant we computed S separately per condition and used the mean of the two 

S values for the estimation of da. The same value of S was used for calculating da in 

the liberal and in the conservative conditions.  Participants who did not have the 

predefined minimum of operating points for computing S in both conditions, were 

excluded from analysis.  

When using signal-detection sensitivity measures, the conversion of the rates to 

z-space requires correction methods for values of HR and FAR of 100% and 0%, 

respectively (e.g., log-linear correction methods, Snodgrass & Corwin, 1988). 

However, no correction methods were needed in the analysis of our simulated data 

when requiring at least three operating points in each condition. When analyzing the 

data of participants with a minimum of three operating points, C3 will always yield 

HR values lower than 100% and FAR values higher than 0%. This is so because 

participants for whom 100% of the simulated signals sampled from the target 

distribution exceed C3 will be discarded because they will have fewer than three 

operating points. For these participants, the HR for C3 will be 100%. The HR for C1 

and C2, the lower criteria, will inevitably also be 100%, because all 100% of the 

signals that exceed C3 will also exceed the lower criteria10. At bottom, under the 

algorithm requiring at least three operating points per condition, the HR and FAR we 

                                                           
9 First, HR of 100% and FAR of 0% yield z-scores equal to infinity.  Therefore, all such operating points were eliminated from the computation of S. Second, 

some participants had two or more identical operating points. For example, if the sampled responses for a participant all exceeded the second criterion, then the 

HR and FAR for the first and second criterion would be the same. The upshot of having two (or more) identical operating points was fewer points for the 

computation of S. 

 
10 Likewise, participants with FARs of 0% for C3 will have fewer than three operating points and will 

be discarded from the analysis. FARs of 0% represent data for which no responses from the lure 

distribution exceed C3.  Inevitably, for these participants, 0% of signals will exceed the higher criteria, 

C4 and C5.  



used for calculating sensitivity (see Formulas 2 and 3) are never equal to 100% and 

0%, and no correction method is needed neither for the calculation of da nor for the 

calculation of d′.  

Following Rotello et al. (2008), we sampled the parameter space with multiple 

experimental scenarios.  The different experimental scenarios varied across three 

types of study variables, with their levels completely crossed. The variable types were 

Experimenter variables—variables that are controlled by the experimenter in an 

empirical setting, Distribution variables—variables that describe the data-generating 

model, usually unknown by the experimenter, and Criteria variables—the placement 

and arrangement of the different confidence levels, corresponding to participants’ 

possible levels of bias. See Figure 2 for a summary of the variables and their levels.  

 Figure 2. Summary of all the variables, and their levels, used in the simulations to explore 

the parameter space. All variables are categorized by variable types.  

  

Experimenter variables. Twenty combinations of five sample sizes (N = 15, 25, 

50, 75 or 100) were crossed with four numbers of trials (T = 32, 64, 128 or 256). 

Experimenter 
variables

Sample size 25, 50 or 100 participants

Number of trials per 
condition

64, 128 or 256 

trials per condition

Distribution 
variables

Type of distribution Gaussian (Equal-variance, Unequal-
variance with 0.8 SD ratio, Unequal-

variance with 0.6 SD ratio) 
Rectangular (Equal-variance)

Distance between 
distributions

0.5, 1, or 2 SDs for the Gaussian 
distributions, 0.37 SDs for the 

rectangular distributions (relative to 
the Lure distribution)

Criteria 
variables

Placment how liberal the placement is

Spread wide or narrow

Shift size
0.3, 0.5 or 0.7 SDs for the Gaussian 

distributions, 0.08 SDs for the rectangular 
distributions (relative to the Lure 

distribution)



Distribution variables. We simulated experimental scenarios of both equal and 

unequal-variance Gaussian lure and target distributions. We also simulated equal 

variance Rectangular distributions. We simulated scenarios of different distances 

between the lure and target distributions (For the Gaussian distributions, d = 0.25, 0.5, 

1, 1.5, 2 and 2.5 SDs relative to the lure distribution. For the Rectangular 

distributions, d = 0.37 SDs relative to the lure distribution 11 ). A larger distance 

between those distributions reflects a higher sensitivity for distinguishing between 

targets and lures.  

Criteria variables.  We set criteria under different schemes for the liberal 

condition and defined the conservative condition relative to the liberal condition (see 

Figure 1).  For simplicity, the criteria were always equally spaced.  For the liberal 

condition we manipulated the locations of the criteria (Liberal, Neutral or 

Conservative) as well as their spread, that is, the distance between the criteria (Wide 

or Narrow).  

For the conservative condition, we shifted the five liberal criteria by a fixed 

amount. We created different experimental scenarios by varying the magnitude of the 

shift (For the Gaussian distributions, 0.3, 0.5 or 0.7 SDs relative to the lure 

distribution. For the Rectangular distributions, 0.08 SDs relative to the lure 

distribution). This manipulation allowed us to find boundary conditions under which a 

measure might not be bias-independent. For measures that are affected by bias, a 

                                                           
11 When running rectangular lure and target distributions, we wanted to cover the parameter space in a 

manner that is comparable to the Gaussian distributions (e.g., small and large distances between 

distributions have approximately the same meaning in regards to the lure SD). However, some 

distribution and criteria variables led to a very large exclusion of participants, such that in several 

simulations we did not have enough participants to run a t-test. We therefore limited the experimental 

scenarios for Rectangular-distributions simulations. We still obtained results from 18 different 

simulations of rectangular distributions, each containing 10,000 iterations. All the results from those 

simulations appear in Appendix A.     



bigger shift in bias might lead to more erroneously significant results (i.e., higher 

T1ER).  

 

Results 

We investigated 1,476 parameter combinations – each parameter combination 

will be referred to as a simulation. A simulation was defined as identical values across 

all the parameters (sample size, number of trials, distance, and criteria placement) 12. 

We ran 10,000 iterations of each simulation.  The dependent variable was T1ER — 

rate of erroneous significant results— across the 10,000 iterations. The detailed 

results per simulation appear in Appendix A.  Here we provide representative 

findings. Both the data and the simulations script will be made available through the 

OSF link – https://osf.io/d5jub. 

Type I error rates for SPSMs. Pr, A′ and d′ and da were computed for each of the 

two experimental conditions and the data were then submitted to a dependent sample 

t-test. T1ERs were calculated as the proportion of significant tests out of the 10,000 

iterations, per SPSM.  Figure 3 presents T1ERs of Pr (Panel A), A′ (Panel B) and d′ 

(Panel C) as a function of sample size and number of trials for simulations assuming 

Gaussian distributions (equal variance, left column; unequal variance, right column). 

Figure 4 presents T1ERs of Pr (Panel A), A′ (Panel B) and d′ (Panel C) as a function 

of sample size and number of trials, assuming Rectangular distributions.  

                                                           
12  Note that the degrees of freedom for the t-tests was not always equal to the number of simulated 

participants. In addition to the exclusion of participants explained in the Methods section, some 

simulated participants yielded values of H=0% or FA=100%, reflecting wrong responses for all target 

or lure trials, respectively. These participants were also excluded (so as to best mimic the analysis of 

empirical data).  Indeed, in empirical setting, H=0% or FA=100% suggests that the participant did not 

understand task instructions or did not pay attention at either encoding or retrieval.  Thus, their data 

will probably be eliminated from analysis, a procedure we endorse.  

 



Our results completely replicated those of Rotello et al. (2008). Thus, T1ERs for 

SPSMs were approximately 5% under only two conditions, across their parameter 

space.  First, for d′ under equal-variance Gaussian distributions (Appendix A). 

Second, for Pr under Rectangular distributions (also see Appendix A). 

Notwithstanding these two conditions, for all other experimental conditions, SPSMs 

were higher than 5% and grew to 100% with increases in sample size and in the 

number of trials. We note in particular the simulations of unequal-variance Gaussian 

distributions (likely the distributions underlying recognition memory) for which all 

SPSMs showed high T1ERs.  Together, the results are consistent with the idea that 

T1ERs are approximately 5% if and only if the data-generating model is congruent 

with the measurement model (i.e., T1ER of d′ for Equal-variance Gaussian 

distributions; T1ER of Pr for Rectangular distributions).  

An additional finding, again replicating Rotello et al. (2008), was that under all 

scenarios for which T1ERs were higher than 5%, the rates were positively correlated 

with both the number of trials and sample size. For example, when computing TIERs 

of d′ for unequal-variance simulations, T1ERs unfailingly reached 100% for 

simulations with 256 trials and sample size of 100 participants13.  

                                                           
13  This was the case for all simulations where the size of shift in criteria between conditions was 0.5 or 

0.7. However, for a very small shift in criteria (0.3), T1ER sometimes reached values of ‘only’ 98% or 

99%. This is because the small size of shift resulted in a small difference in bias, so few T1ERs 

occurred due to the (small) changes in bias.  



 Figure 3. Type-I error rates of Pr, A′ and d′ under Gaussian-distributions (equal and unequal 

variance; left-side and right-side figures, respectively) as a function of sample size and 

number of trials. The spread of criteria was neutral and wide. The distance between 

distributions was 1 SD relative to the lure distribution and the size of shift in criteria between 

conditions was 0.5 SD relative to the lure distribution. For Unequal-variance Gaussian 

distributions, S = was 0.8 (reflecting the lure-to-target SD ratio of recognition memory). 

 

 

Panel A: T1ERs for Pr – Gaussian distributions 

Panel B: T1ERs for A′ - Gaussian distributions 

Panel C: T1ERs for d′ - Gaussian distributions 



 Figure 4. Type-I error rates of Pr, A′ and d′ under Rectangular-distributions as a function of 

sample size and number of trials. The spread of criteria was neutral and narrow. The distance 

between distributions was 0.37 SD (relative to the lure distribution), and the size of shift in 

criteria between conditions was 0.08 SD (relative to the lure distribution).  

 

Type I error rates for da. da was the one measure that stood out from the crowd, 

with T1ERs of only 5% for both equal and unequal Gaussian distributions.  Figure 5 

illustrates T1ERs of da as a function of sample size and number of trials. For Gaussian 

distributions, both equal and unequal variance, da presented the acceptable 5% levels 

of Type I errors, across all values of sample size and number of trials.  

Panel A: T1ERs for Pr – Rectangular distribution Panel B: T1ERs for A′ – Rectangular distribution 

Panel C: T1ERs for d′ – Rectangular distribution 



 

Figure 5. Type-I error rates of da for different simulated distributions (Top left: Equal-

variance Gaussian, Top right: Equal-variance Rectangular, Bottom left: Unequal-variance 

Gaussians, S = 0.8, Bottom right: Unequal-variance Gaussians S = 0.6), as a function of 

sample size and number of trials. For Gaussian distributions, the spread of criteria was neutral 

and wide. The distance between distributions was 1 SD (relative to the lure distribution), and 

the size of shift in criteria between conditions was 0.5 SD (relative to the lure distribution). 

For Rectangular distributions, the spread of criteria was neutral and narrow. The distance 

between distributions was 0.37 SD (relative to the lure distribution), and the size of shift in 

criteria between conditions was 0.08 SD (relative to the lure distribution). 

 

Still, we identified three experimental conditions for which the rate of da were 

consistently higher than 5% (see Appendix A)14.  First, for Rectangular distribution, 

T1ERs of da were usually higher than 5%. This finding was predicted because a data-

generating model which assumes Rectangular distributions is incongruent with the 

Gaussian assumption of the measurement model underlying da.   

Second, for Gaussian distributions, high T1ERs were observed when two 

cumulative conditions were met: a low number of trials in conjunction with a large 

                                                           
14 Because of the large number of simulations, idiosyncratic combinations of parameters sometimes 

yielded T1ES higher than 5%.  We did not document these patterns because they did not seem to 

illuminate the conditions under which da cannot be trusted to yield 5% error rates. 



sample size. For example, in Figure 5, T1ERs reached approximately 10% when the 

sample size was 100 (the largest simulated sample size) with 64 trials per condition 

(the fewest simulated number of trials; see Figure 5 – Bottom Panels, teal circles for 

64 trials). Note that the sample size of 100 did not produce a high T1ER when the 

number of trials per condition was higher (128 or 256; see Figure 5 – Bottom Panels, 

orange triangles and purple squares, respectively). In the Discussion, we provide an 

account for this pattern of results. 

Third, for Gaussian distributions T1ERs were higher than 5% when a large number 

of simulated participants were excluded from analysis. This was most often observed 

for simulations with few trials. As described in the Method section, participants were 

excluded when fewer than three operating points could be extracted in either of the 

two conditions.  As a result, the actual sample sizes (i.e., sample sizes de facto) were 

smaller than the simulated sample sizes (i.e., the sample size that was set in the 

computer simulation). See Appendix C for a detailed tabulation of the actual sample 

sizes as a function of the simulated samples sizes and as a function of number of trials 

across participants.  

Figure 6 depicts the T1ER as a function of the actual sample size (as a proportion 

of the simulated sample size) and as a function of criteria placement. Examination of 

the figure reveals that overall, decreases in the proportion of the actual sample size 

out of the simulated sample size are associated with a higher frequency of T1ERs 

greater than 5%. Note, however, that high T1ERs were typically observed for 

conservative criteria-placement which produced a small proportion of actual sample 

size (out of simulated sample size). Also note that even when considering simulations 

where the mean actual sample size was small, higher T1ERs were observed only for a 

small number of those simulations with most simulations associated with T1ERs of 



approximately 5%.  In fact, most simulations did not include exclusions in any of the 

10,000 iterations15.  

In Appendix C, we investigate the actual sample size, presenting the effects of 

simulated sample size and the number of simulated trials per condition on the median 

size of the actual sample size. In Appendix D, we explore an additional pattern of 

results, testing the computation of S for different Gaussian simulations. We show how 

the overall similarity between S and the true SD ratio is high, and how a decrease in 

sample size were associated with estimates of S that deviated to greater extents from 

the true SD ratio. We return to these results in the Discussion.   

                                                           
15  When exploring the parameter space in simulations, levels of different variables can create extreme 

experimental scenarios (see Discussion, Footnote 16, for an example). These scenarios are usually very 

unlikely in empirical settings. If a pattern of results is not observed across several levels of 

distributional and criteria variables, it should be taken with a grain of salt.  



Figure 6. Type I error rate of da, as a function of the proportion of actual sample-size out of 

the simulated sample size. All the simulations described in this figure are Gaussian. 

Conservative criteria-placements are presented in the top panel, Neutral criteria-placements 

are presented in the middle panel, Liberal criteria-placements are presented in the bottom 

panel. Different sample sizes are depicted as different colors.  

  

Conservative criteria-placements 

Neutral criteria-placements 

Liberal criteria-placements 



Discussion  

We ran Monte-Carlo simulations and explored the parameter space of possible 

data-generating models to investigate the validity of common SPSMs (Pr, A′ and d′) 

in indexing sensitivity, as well as of the multi-point measure of da. The simulations 

revealed that da is the best contender for indexing sensitivity in recognition memory. 

For Gaussian lure and target distributions, T1ERs of da were approximately 5% 

across different sample sizes, number of trials, response criteria, and distances 

between distributions. Importantly, the 5% T1ER was found even for unequal-

variance Gaussian distributions, the data-generating model that many researchers 

argue best reflects recognition memory. Assuming that for recognition memory the 

lure and target distributions are Gaussian with an SD ratio of 0.8, da is the only 

sensitivity measure that is demonstrably able to index recognition data in a valid 

manner (Figure 5, bottom-left panel).     

Unlike da, more often than not, SPSMs showed T1ERs that were higher than 5%. 

This pattern of results replicated previous simulations (Rotello et al., 2008) that found 

T1ERs higher than 5% for several SPSMs. The only exception was when the 

measurement model was congruent with the data-generating model. Specifically, d′ 

was associated with only 5% T1ERs when measuring sensitivity in data from equal-

variance Gaussian distributions. Likewise, T1ERs were 5% when Pr was used to 

measure data from equal-variance Rectangular distributions. However, whenever the 

data-generating models were incongruent with the measurement models, T1ERs were 

higher than 5%, reaching 100% with increases in the number of trials or in sample 

size. Notably, for unequal-variance Gaussian distributions with SD ratio of 0.8—

arguably the true data-generating model for recognition memory—T1ERs for all 

SPSMs were higher than 5%.   



Both here and in previous simulations (Rotello et al., 2008), the high T1ERs 

obtained for SPSMs show that computing sensitivity measures when the data-

generating model is incongruent with the measurement model can lead to wrong 

inferences about the data. Note that the fact there is a high positive correlation 

between results from Pr and d′ does not mean we can use Pr for equal-variance 

Gaussian distributions and expect the valid results obtained by using d′. Using a 

wrong sensitivity measure can be thought of as analogous to using a wrong measure 

of central tendency when performing a t-test. Thus, for example, although means and 

medians are highly correlated, replacing means with medians will yield invalid 

conclusions in a t-test. 

Like Rotello et al. (2008), we too found a positive association for SPSMs 

between the T1ERs and both sample size and number of trials. This association is a 

cause of great concern. To increase statistical power, researchers recruit large 

samples, as recommended (Smith & Little, 2018) following the replication crisis 

(Open Science Collaboration, 2015). Our results suggest that large sample sizes, while 

increasing power, can also increase the rate of Type I errors in recognition memory. 

Therefore, finding a measure that has a measurement model congruent with the true 

data-generating model of recognition memory is vital for the ability to sustain high-

powered, reproducible, and (most importantly) valid recognition research.      

To compute da, we simulated confidence ratings. From the confidence ratings, we 

were able to estimate the ratio of the lure-to-target SD (To be referred to as "the SD 

ratio"). The values of the SD ratio and their estimation in the simulated data (S) were 

approximately the same, in that the mean S values in simulations deviated from the 

true SD ratio by approximately 0.05 or less. The largest deviations of mean S from the 

true SD ratio were observed in simulations in which the placement of criteria was 



conservative (see Appendix D). Indeed, conservative criteria-placement simulations 

were also the simulations in which most cases of T1ER higher than 5% were observed 

for da (see Results, Figure 6).   

Presumably, because of the location of criteria, conservative placements yielded 

more FAR = 0% than other placements, yielding fewer than five operating points for 

many participants and therefore a less accurate estimations of the SD ratio – less 

accurate S16. Because the value of S was based on less data and was therefore less 

accurate, the ensuing estimates were more distant from the true SD ratio. Eventually, 

less accurate S leads to a larger discrepancy between the simulated data-generating 

model and the measurement model of da (which is based on S), therefore, to higher 

T1ERs (see explanation below).    

Nevertheless, in most simulations, the values of S were similar to the true SD 

ratio and seemed to provide a good estimate for the computation of da. This result is 

not surprising in that the simulations did not include any noise and as such were ideal 

for the estimation of any parameter, including the true SD ratio. Future research is 

required to test the estimation of S using empirical data, where the control over noise 

is limited.       

Importantly, to get the multiple operating points necessary for the estimation of 

S, confidence ratings are needed. It is not sufficient to obtain binary old-new 

                                                           
16 In the conservative placements, the middle criterion was set at 0.5. The mean of the lure and target 

distributions were set at equal distances from 0 (see Methods). Therefore, in large-distance simulations 

(distance = 2 SDs relative to the lure distribution), described in the Results as the simulations that 

included the largest deviations of S from the SD ratio, the mean of the lure distributions was set at -1. If 

the mean of the lure distribution is -1, many signals sampled from this distribution are around -1. If the 

middle criterion (C3; see Methods) was set at 0.5 for the liberal condition and shifted by 0.3-0.7 SDs 

(relative to the lure distribution; see Methods) for the conservative condition, many signals will not 

exceed this criterion, resulting in much fewer "old" responses for lures. Ultimately, a large portion of 

participants will have a 0% FAR for at least one operating point. That is, they will have fewer 

operating points for the computation of S. This was not the case for the liberal criteria placement- the 

middle criterion was -0.5, but the mean of the lure and target distributions were like the conservative 

placement, therefore a larger portion of participants had all five operating points.   



judgments. Researchers might be reluctant to move from binary responses to 

confidence responses.  Indeed, one lab has reported recognition accuracy to be lower 

following responses given on a six-point confidence scale as compared to binary 

responses (Benjamin et al., 2009).  Still, re-analyses of those data revealed no 

difference in accuracy between the two models of responding (Kellen et al., 2012). 

We believe that the requirement for using confidence ratings should not turn 

researchers away from using da, a measure that we have demonstrated here to be the 

only valid sensitivity measure for recognition memory.  

Against the backdrop of most Gaussian simulations that revealed 5% T1ERs with 

da, higher rates were found under two scenarios. Both scenarios (described below) 

have a common feature – the less accurate estimation of S under specific conditions of 

our simulations. The first, for large sample sizes (N=100) and a small number of trials 

(64 trials), T1ERs were higher than 5% (see Appendix A). The high T1ERs for many 

participants and few trials can be explained in the following way. For a measure to be 

valid and have 5% T1ER, the measurement model must be congruent with the data-

generating model. One element of the measurement model of da is the SD ratio, 

estimated by S. If participants have few responses, for example, because of a low 

number of trials per condition, then the estimate of S will be less accurate (see Figure 

6 and Appendix A) and consequently, the data-generating model will be less 

congruent with the measurement model. Though the discrepancies between the data-

generating and the measurement models are likely very small, even small 

discrepancies can yield significant differences in highly powered experiments, such as 

experiments with large sample sizes. It is for this reason, that T1ERs higher than 5% 

were found for the conjunction of large sample size with few trials.   



If a small number of trials can lead highly powered experiments to show false 

significant results at a rate higher than 5%, a larger number of trials might help in 

reducing the T1ER back to 5%. By running more trials for each condition, a more 

accurate SD ratio estimation is obtained, resulting in higher congruency between the 

data-generating model and the measurement model. Therefore, T1ERs will likely be 

reduced to the desired 5%. This is indeed the case, as we discovered in our results. 

When the number of trials was higher (128 or 256 trials), T1ERs were approximately 

5% for da, even with large sample sizes (see Results, Figure 5). We assume that da can 

still be used in large-sample experiments so long as the number of trials each 

participant undergoes is closer to 128 rather than 64. Fortunately, that is already the 

case for most recognition-memory studies where researchers typically run tasks with 

considerably more than 64 trials per condition.    

The second scenario under which high T1ERs for da were observed was when the 

actual sample size was considerably smaller than the simulated sample size (see 

Results). The higher T1ERs seem, again, to be the outcome of the less accurate 

parameter estimation (S). As before, this pattern was observed primarily for 

simulations with a small number of trials.   

The two exceptions notwithstanding, we argue that da is a better alternative than 

SPSMs for measuring sensitivity and is, in fact, a very good alternative. This measure 

is bias-independent for experiments with a large number of trials, an attribute of the 

experiment that is often under the researcher’s control. When such experiments are 

run, a cautionary signal for T1ERs higher than 5% is a large portion of exclusions.  

Results with many exclusions should be viewed with caution.  

Importantly, the use of S introduces a data-based estimation of a parameter (the 

true SD ratio) into the calculation of da. As the estimation is based on five (or fewer) 



operating points, the SD ratio is often not estimated precisely by S. When calculating 

da, if we could have access to the true parameter, we suggest that the ensuing T1ERs 

would not be higher than 5%. This suggestion is supported by the results of equal-

variance Gaussian distributions simulations.  We compared T1ERs for d′ which has a 

built-in assumption of SD ratio = 1 (which is a true assumption for those simulations) 

to da, which estimates the SD ratio from the data via S (and inevitably obtains slightly 

inaccurate estimates for some participants in each simulated experiment).  This 

comparison revealed that for most of those simulations, d′ is associated with lower 

T1ERs than da. Unfortunately, outside of such simulations, we don’t have access to 

the true population SD ratio.       

To evaluate the implications of our simulations to future recognition 

experiments, we wish to point out an asymmetry in the potential of simulations to 

advance the validity of any measure.  Simulations alone provide a robust tool in 

showing a measure to be invalid, in our case—in establishing the SPSMs are not bias-

independent.  However, to establish that a measure, any measure, is bias-independent 

– simulations are not enough.  

For SPSMs, simulations represent possible experimental scenarios under which 

T1ERs are higher than 5%. Because there is a possibility that such experimental 

scenarios do exist (e.g., there is a strong possibility that the lure and target 

distributions are indeed unequal-variance Gaussian), and because of the severity of 

Type I errors in impairing our ability to infer from our data, these results should be 

sufficient for researchers to renounce those measures and seek alternatives.  

For da, however, 5% T1ERs in simulations are not sufficient to prove this 

measure is valid. Simulations always include overt and covert assumptions regarding 

the computer-generated data. Specifically, in our simulations, we knowingly made 



assumptions regarding the data-generating model of recognition memory. As such, we 

ran simulations based on Gaussian (both equal and unequal variance) and Rectangular 

distributions. da only showed low T1ERs when data were simulated from Gaussian 

distributions. The debate in the recognition literature regarding the data-generating 

model of recognition memory (e.g., Mickes et al., 2007; Rouder et al., 2010; Wixted 

& Mickes, 2010) is ongoing, and results from our simulations are orthogonal to the 

question of the true recognition memory data-generating model.  Thus, for example, 

our simulations reveal that if the true data-generating model is Rectangular, da will 

not be valid. Because we have only indirect access to the true data-generating model 

in recognition memory, the only way to guarantee the validity of da will be by 

analyzing real-world empirical data.  

Moreover, many other aspects of data generation in our simulations were based 

on simplistic assumptions. For example, the confidence ratings in each trial were 

sampled independently. However, confidence carry-over effects have been 

demonstrated, such that the confidence in trial N is correlated with the confidence in 

trial N-1 (Kantner et al., 2019). This confidence carry-over effect was not taken into 

consideration in our sampling process, and we do not know the extent to which such 

carry-over effects will affect the validity of da. As such, in an empirical setting, there 

can be many other effects we are unaware of.  We do not know the extent to which 

these effects impact the validity of our measures (Treisman & Faulkner, 1984; Van 

Zandt, 2000; For examples in perceptual tasks, see Treisman & Williams, 1984). The 

only way to prove the validity of da is to put it to the test using empirical data from 

iso-sensitive conditions.        

While future research is needed to establish the validity of da, our current 

investigation points at a promising direction in support of a little-known sensitivity 



measure for measuring accuracy in recognition tasks. Importantly, as a replication of 

previous simulations (Rotello et al., 2008), our results also confirm the importance of 

choosing a valid measure, not only in recognition memory but for other cognitive 

tasks as well. The choice of a measure must always consider the data-generating 

model of the task, and the fit between the data-generating model and the measurement 

model, so conclusions can be drawn from valid results. The choice of a valid measure 

is an inherent part of the manufacturing processes of empirical data. 
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